Fast Matrix Multiplication
نویسنده
چکیده
We give an overview of the history of fast algorithms for matrix multiplication. Along the way, we look at some other fundamental problems in algebraic complexity like polynomial evaluation. This exposition is self-contained. To make it accessible to a broad audience, we only assume a minimal mathematical background: basic linear algebra, familiarity with polynomials in several variables over rings, and rudimentary knowledge in combinatorics should be sufficient to read (and understand) this article. This means that we have to treat tensors in a very concrete way (which might annoy people coming from mathematics), occasionally prove basic results from combinatorics, and solve recursive inequalities explicitly (because we want to annoy people with a background in theoretical computer science, too). ACM Classification: F.2.2 AMS Classification: 68Q17, 68Q25
منابع مشابه
Recursion removal in fast matrix multiplication
Recursion’s removal improves the efficiency of recursive algorithms, especially algorithms with large formal parameters, such as fast matrix multiplication algorithms. In this article, a general method of breaking recursions in fast matrix multiplication algorithms is introduced, which is generalized from recursions removal of a specific fast matrix multiplication algorithm of Winograd.
متن کاملA New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure
The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...
متن کاملTriangular Factorization and Inversion by Fast Matrix Multiplication
The fast matrix multiplication algorithm by Strassen is used to obtain the triangular factorization of a permutation of any nonsingular matrix of ordern in <Cxnlos'7 operations, and, hence, the inverse of any nonsingular matrix in <Cürtlog'7 operations.
متن کاملFast Rectangular Matrix Multiplication and Applications
First we study asymptotically fast algorithms for rectangular matrix multiplication. We begin with new algorithms for multiplication of an n_n matrix by an n_n matrix in arithmetic time O(n), |=3.333953..., which is less by 0.041 than the previous record 3.375477... . Then we present fast multiplication algorithms for matrix pairs of arbitrary dimensions, estimate the asymptotic running time as...
متن کاملFast matrix multiplication is stable
We perform forward error analysis for a large class of recursive matrix multiplication algorithms in the spirit of [D. Bini and G. Lotti, Stability of fast algorithms for matrix multiplication, Numer. Math. 36 (1980), 63–72]. As a consequence of our analysis, we show that the exponent of matrix multiplication (the optimal running time) can be achieved by numerically stable algorithms. We also s...
متن کاملFast matrix multiplication techniques based on the Adleman-Lipton model
Abstract. On distributed memory electronic computers, the implementation and association of fast parallel matrix multiplication algorithms has yielded astounding results and insights. In this discourse, we use the tools of molecular biology to demonstrate the theoretical encoding of Strassen’s fast matrix multiplication algorithm with DNA based on an n-moduli set in the residue number system, t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Theory of Computing, Graduate Surveys
دوره 5 شماره
صفحات -
تاریخ انتشار 2013